首页/应用软件/内容

MYSQL_多版本并发控制、存储引擎、索引简介

应用软件2022-07-03 阅读()
SQL是Structured Query Language(结构化查询语言)的缩写。SQL是专为数据库而建立的操作命令集,是一种功能齐全的数据库语言。在使用它时,只需要发出“做什么”的命令,“怎么做”是不用使用者考虑的。SQL功能强大、简单易学、使用方便,已经成为了数据库操作的基础,并且现在几乎所有的数据库均支持SQL。

多版本并发控制

mysql的大多数事务型存储引擎实现的都不是简单的行级锁。基于提升并发性能的考虑,它们一般都同时实现了多版本并发控制。

可以认为MVCC是行级锁的一种变种,但是它很多情况下避免了加锁操作,因为开销更低。

InnoDB的MVCC,是通过在每行记录最后保存的两个隐藏的列来实现,这两个列,一个保存了行的创建时间,一个保存行的过期时间(或删除时间),当然存储的并不是实际的时间值,而是系统版本好。每开始一个新的事务,系统版本号都会自动递增。事务开始时刻的系统版本号会作为事务的版本号,用来查询到的每行版本号进行比较。

REPEATABLE READ隔离级别下,MVCC的实现:

MVCC只在REPEATABLE READ跟READ COMMITED两个隔离级别工作。其他两个隔离级别都和MVCC不兼容。因为READ UNCOMMITED总是读取最新的数据行,而不是符合当前事务版本的数据行。而SERIALIZABLE则会对所有读取的数据的行都加锁。

存储引擎

InnoDB存储引擎

InnoDB是MYSQL的默认事务型引擎,也是最重要、使用最广泛的存储引擎。除非有非常特别的原因需要使用其他的存储引擎,否则应该优先考虑InnoDB引擎。

InnoDB采用MVCC来支持高并发,并且实现了四个标准的隔离级别。默认级别是REPEATABLE READ(可重复读),并且通过间隙锁+MVCC策略防止幻读的实现,间隙锁使得InnoDB不仅仅锁定查询设计的行,还会对索引中的间隙进行锁定,以防止幻影行的插入。

间隙锁:当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
参考:间隙锁(Next-Key锁)

主索引是聚簇索引,在索引中保存了数据,从而避免直接读取磁盘,因此对查询性能有很大的提升。

InnoDB内部做了很多优化,包括从磁盘读取数据时采用的可预测性预读,能够自动在内存中创建hash索引以加速度操作的自适应哈希索引,以及能够加速插入操作的插入缓冲区等。

MyISAM存储引擎

在mysql5.1以及之前的版本,MyISAM是默认的存储引擎。MyISAM提供了大量的特性,包括全文索引、压缩、空间函数等,但是不支持事务和行级锁,而且有一个毫无疑问的缺陷是崩溃之后无法安全恢复。

对于只读的数据、或者表比较小、可以忍受修复操作,则依然可以使用MyISAM引擎。

创建MyISAM表的时候,如果指定了DELAY_KEY_WRITE选项,在每次修改执行完成时,不会立刻将修改的索引数据写入磁盘,而是会写到内存中的键缓冲区,只有在清理键缓冲区或者关闭表的时候才会将对应的索引块写入到磁盘。这种方式可以极大地提升写入性能,但是在数据库或者主机崩溃时会造成索引损坏,需要执行修复操作。

比较

备份的类型

索引

索引(也叫做“键(key)”)是存储引擎用于快速查找记录中的一种数据结构。

B-Tree索引

大多数mysql引擎都支持这种索引。

虽然使用术语“B-Tree",但是不同的存储引擎可能使用不同的存储结构,NDB集群存储引擎内部实际用的是T-Tree,InnoDB则使用B+Tree。

B-Tree索引能够加快访问数据的速度,因为存储引擎不需要进行全表扫描来获取需要的数据,取而代之的是从索引的根节点开始搜索,因此查找速度会快很多。

B-Tree对索引列是顺序组织存储的,很适合查找范围数据。因为索引树是有序的,所以除了用户查找,还可以用来排序和分组。

可以指定多个列作为索引列,多个索引列共同组成索引键。B-Tree索引适用于全键值、键值范围或键前缀查找,其中键前缀查找只适用与根据最左前缀查找。查找一定得按照索引的最左列开始。

B-Tree索引的数据结构

B-Tree

为了描述B-Tree,首先定义一条数据记录为二元组[key,data],key作为记录的键值,对于不同数据记录,key是互不相同的,data为数据记录除key外的数据。

查找算法:首先在根节点进行二分查找,如果找到则返回对应节点的data,否则在相应区间的指针指向的节点递归进行查找。

由于插入删除新的数据记录会破坏B-Tree的性质,因此在插入删除时,需要对树进行一个分裂、合并、旋转等操作以保持 B-Tree 性质。

1.png

B+Tree

与B-Tree相比,B+Tree有以下特点:

1.png

带有顺序访问指针的B+Tree

一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。

1.png

这个优化的目的是为了提供区间访问的性能,例如图中如果要查询key为18到49的所有记录。

优势

红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用B-Tree作为索引结构,主要有以下两个原因:

参考:MySQL索引背后的数据结构及算法原理

哈希索引

InnoDB引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用得非常频繁,会在B+Tree索引之上再创建一个哈希索引,这样就让B+Tree索引具有哈希索引的一些优点,比如快速的哈希查找。

哈希索引能在O(1)时间进行查找,但是失去了有序性,它具有以下限制:

空间数据索引(R-Tree)

MyISAM表支持空间索引,可以用作地理数据存储。空间索引会从所有维度来索引数据,查询时可以根据任意维度来组合查询。

必须使用Mysql的GIS相关函数如MBRONTAINS()等来维护数据。

全文索引

全文索引是一种特殊类型的索引,它查找的是文本中的关键字,而不是直接比较索引中的值。查找条件使用 MATCH AGAINST,而不是普通的 WHERE。

全文索引一般使用倒排序索引实现,它记录着关键词到期所在文档的映射。

MyISAM存储引擎支持全文索引,InnoDB存储引擎在Mysql 5.6.4版本中也开始支持全文索引。

索引的优点

相关文章:

MySQL数据库InnoDB存储引擎多版本控制(MVCC)实现原理分析

MySQL存储引擎简介

以上就是MYSQL_多版本并发控制、存储引擎、索引简介的详细内容,更多请关注php中文网其它相关文章!


学习教程快速掌握从入门到精通的SQL知识。



……

相关阅读